Direct NMR Observation of the Thioredoxin-mediated Reduction of the Chloroplast NADP-malate Dehydrogenase Provides a Structural Basis for the Relief of Autoinhibition

1999 
Abstract The chloroplastic NADP-dependent malate dehydrogenase (NADP-MDH) catalyzing the reduction of oxaloacetate into l-malate is regulated by light. Its activation results from the thioredoxin-mediated reduction of two disulfides, located, respectively, in N- and C-terminal sequence extensions typical of all NADP-dependent light-regulated forms. Site-directed mutagenesis studies and the resolution of the three-dimensional structure of the oxidized (inactive) Sorghum vulgare enzyme showed that the C-terminal Cys365–Cys377 disulfide constrains the C-terminal extension to fold into the active site where it acts as an internal inhibitor. In the present study, two-dimensional proton NMR spectra of an engineered NADP-MDH rendered monomeric by a 33-amino acid deletion at the N terminus (38 kDa) revealed that a 15-amino acid-long C-terminal peptide (Ala375 to C-terminal Val389) acquired an increased mobility upon reduction, allowing its direct sequence-specific NMR assignment. The location of the flexible peptide in the sequence suggests that the first part of the C-terminal peptide is still folded near the core of the enzyme, so that cysteines 365 and 377 remain in proximity to allow for an efficient reoxidation/inactivation of the enzyme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    35
    Citations
    NaN
    KQI
    []