language-icon Old Web
English
Sign In

Thioredoxin

4TRX, 1AIU, 1AUC, 1CQG, 1CQH, 1ERT, 1ERU, 1ERV, 1ERW, 1MDI, 1MDJ, 1MDK, 1TRS, 1TRU, 1TRV, 1TRW, 2HSH, 2HXK, 2IFQ, 2IIY, 3E3E, 3KD0, 3M9J, 3M9K, 3QFA, 3QFB, 3TRX, 4LL1, 4LL4, 4OO4, 4OO5, 4POK, 4POL, 4POM, 4PUF, 5DQY729522166ENSG00000136810ENSMUSG00000028367P10599P10639NM_003329NM_001244938NM_011660NP_001231867NP_003320NP_035790Thioredoxin is a class of small redox proteins known to be present in all organisms. It plays a role in many important biological processes, including redox signaling. In humans, thioredoxins are encoded by TXN and TXN2 genes. Loss-of-function mutation of either of the two human thioredoxin genes is lethal at the four-cell stage of the developing embryo. Although not entirely understood, thioredoxin plays a central role in humans and is increasingly linked to medicine through their response to reactive oxygen species (ROS). In plants, thioredoxins regulate a spectrum of critical functions, ranging from photosynthesis to growth, flowering and the development and germination of seeds. They have also recently been found to play a role in cell-to-cell communication.1aiu: HUMAN THIOREDOXIN (D60N MUTANT, REDUCED FORM)1auc: HUMAN THIOREDOXIN (OXIDIZED WITH DIAMIDE)1cqg: HIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN HUMAN THIOREDOXIN (C35A, C62A, C69A, C73A) MUTANT AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN REF-1 (RESIDUES 59-71 OF THE P50 SUBUNIT OF NFKB), NMR, 31 STRUCTURES1cqh: HIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN HUMAN THIOREDOXIN (C35A, C62A, C69A, C73A) MUTANT AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN REF-1 (RESIDUES 59-71 OF THE P50 SUBUNIT OF NFKB), NMR, MINIMIZED AVERAGE STRUCTURE1ert: HUMAN THIOREDOXIN (REDUCED FORM)1eru: HUMAN THIOREDOXIN (OXIDIZED FORM)1erv: HUMAN THIOREDOXIN MUTANT WITH CYS 73 REPLACED BY SER (REDUCED FORM)1erw: HUMAN THIOREDOXIN DOUBLE MUTANT WITH CYS 32 REPLACED BY SER AND CYS 35 REPLACED BY SER1mdi: HIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN MUTANT HUMAN THIOREDOXIN AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN NFKB1mdj: HIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN HUMAN THIOREDOXIN (C35A, C62A, C69A, C73A) MUTANT AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN NFKB (RESIDUES 56-68 OF THE P50 SUBUNIT OF NFKB)1mdk: HIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN HUMAN THIOREDOXIN (C35A, C62A, C69A, C73A) MUTANT AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN NFKB (RESIDUES 56-68 OF THE P50 SUBUNIT OF NFKB)1trs: THE HIGH-RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURES OF THE OXIDIZED AND REDUCED STATES OF HUMAN THIOREDOXIN1tru: THE HIGH-RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURES OF THE OXIDIZED AND REDUCED STATES OF HUMAN THIOREDOXIN1trv: THE HIGH-RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURES OF THE OXIDIZED AND REDUCED STATES OF HUMAN THIOREDOXIN1trw: THE HIGH-RESOLUTION THREE-DIMENSIONAL SOLUTION STRUCTURES OF THE OXIDIZED AND REDUCED STATES OF HUMAN THIOREDOXIN2hsh: Crystal structure of C73S mutant of human thioredoxin-1 oxidized with H2O22hxk: Crystal structure of S-nitroso thioredoxin2ifq: Crystal structure of S-nitroso thioredoxin2iiy: Crystal structure of S-nitroso thioredoxin3trx: HIGH-RESOLUTION THREE-DIMENSIONAL STRUCTURE OF REDUCED RECOMBINANT HUMAN THIOREDOXIN IN SOLUTION4trx: HIGH-RESOLUTION THREE-DIMENSIONAL STRUCTURE OF REDUCED RECOMBINANT HUMAN THIOREDOXIN IN SOLUTION Thioredoxin is a class of small redox proteins known to be present in all organisms. It plays a role in many important biological processes, including redox signaling. In humans, thioredoxins are encoded by TXN and TXN2 genes. Loss-of-function mutation of either of the two human thioredoxin genes is lethal at the four-cell stage of the developing embryo. Although not entirely understood, thioredoxin plays a central role in humans and is increasingly linked to medicine through their response to reactive oxygen species (ROS). In plants, thioredoxins regulate a spectrum of critical functions, ranging from photosynthesis to growth, flowering and the development and germination of seeds. They have also recently been found to play a role in cell-to-cell communication. Thioredoxins are proteins that act as antioxidants by facilitating the reduction of other proteins by cysteine thiol-disulfide exchange. Thioredoxins are found in nearly all known organisms and are essential for life in mammals. Thioredoxin is a 12-kD oxidoreductase enzyme containing a dithiol-disulfide active site. It is ubiquitous and found in many organisms from plants and bacteria to mammals. Multiple in vitro substrates for thioredoxin have been identified, including ribonuclease, choriogonadotropins, coagulation factors, glucocorticoid receptor, and insulin. Reduction of insulin is classically used as an activity test. Thioredoxins are characterized at the level of their amino acid sequence by the presence of two vicinal cysteines in a CXXC motif. These two cysteines are the key to the ability of thioredoxin to reduce other proteins. Thioredoxin proteins also have a characteristic tertiary structure termed the thioredoxin fold. The thioredoxins are kept in the reduced state by the flavoenzyme thioredoxin reductase, in a NADPH-dependent reaction. Thioredoxins act as electron donors to peroxidases and ribonucleotide reductase. The related glutaredoxins share many of the functions of thioredoxins, but are reduced by glutathione rather than a specific reductase. The benefit of thioredoxins to reduce oxidative stress is shown by transgenic mice that overexpress thioredoxin, are more resistant to inflammation, and live 35% longer — supporting the free radical theory of aging. However, the controls of this study were short lived, which may have contributed to the apparent increase in longevity Trx1 can regulate non-redox post-translational modifications.. In the mice with cardiac-specific overexpression of Trx1, the proteomics study found that SET and MYND domain-containing protein 1 (SMYD1), a lysine methyltransferase highly expressed in cardiac and other muscle tissues, is also upregulated. This suggests that Trx1 may also play an role in protein methylation via regulating SMYD1 expression, which is independent of its oxidoreductase activity. Plants have an unusually complex complement of Trxs composed of six well-defined types (Trxs f, m, x, y, h, and o) that reside in different cell compartments and function in an array of processes. In 2010 it was discovered for the first time that thioredoxin proteins are able to move from cell to cell, representing a novel form of cellular communication in plants. The primary function of Thioredoxin (Trx) is the reduction of oxidized cysteine residues and the cleavage of disulfide bonds. For Trx1, this process begins by attack of Cys32, one of the residues conserved in the thioredoxin CXXC motif, onto the oxidized group of the substrate. Almost immediately after this event Cys35, the other conserved Cys residue in Trx1, forms a disulfide bond with Cys32, thereby transferring 2 electrons to the substrate which is now in its reduced form. Oxidized Trx1 is then reduced by thioredoxin reductase, which in turn is reduced by NADPH as described above. Thioredoxin has been shown to interact with:

[ "Enzyme", "Oxidative stress", "Redox", "Gene", "Glutaredoxin activity", "Thiol-Disulfide Oxidoreductase", "Thiol-Protein Disulfide Oxidoreductase", "QUIESCIN Q6", "TRX2" ]
Parent Topic
Child Topic
    No Parent Topic