Synthesis of Uniform Disk-Shaped Copper Telluride Nanocrystals and Cation Exchange to Cadmium Telluride Quantum Disks with Stable Red Emission

2013 
We present the synthesis of novel disk-shaped hexagonal Cu2Te nanocrystals with a well-defined stoichiometric composition and tunable diameter and thickness. Subsequent cation exchange of Cu to Cd at high temperature (180 °C) results in highly fluorescent CdTe nanocrystals, with less than 1 mol % of residual Cu remaining in the lattice. The procedure preserves the overall disk shape, but is accompanied by a substantial reconstruction of the anion sublattice, resulting in a reorientation of the c-axis from the surface normal in Cu2Te into the disk plane in CdTe nanodisks. The synthesized CdTe nanodisks show a continuously tunable photoluminescence (PL) peak position, scaling with the thickness of the disks. The PL lifetime further confirms that the CdTe PL arises from band-edge exciton recombination; that is, no Cu-related emission is observed. On average, the recombination rate is about 25–45% faster with respect to their spherical quantum dots counterparts, opening up the possibility to enhance the emiss...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    115
    Citations
    NaN
    KQI
    []