Mitochondria Define Intestinal Stem Cell Differentiation Downstream of a FOXO/Notch Axis

2019 
Differential signalling of the WNT and Notch pathways regulates proliferation and differentiation of Lgr5+ crypt-based columnar cells (CBCs) into all cell lineages of the intestine. We have recently shown that high mitochondrial activity in CBCs is key in maintaining stem cell function. Interestingly, while high mitochondrial activity drives CBCs, it is reduced in the adjacent secretory Paneth cells (PCs). This observation implies that during differentiation towards PCs, CBCs undergo a metabolic rewiring involving downregulation of mitochondrial number and activity, through a hitherto unknown mechanism. Here we demonstrate, using intestinal organoids that FoxO transcription factors and Notch signalling functionally interact in determining CBC cell fate. In agreement with the organoid data, combined Foxo1 and 3 deletion in mice increases PC number in the intestine. Importantly, we show that FOXO and Notch signalling converge onto regulation of mitochondrial fission, which in turn provokes stem cell differentiation into the secretory types; Goblet cells and PCs. Finally, mapping intestinal stem cell differentiation based on pseudotime computation of scRNA-seq data further supports the role of FOXO, Notch and mitochondria in determining secretory differentiation. This shows that mitochondria is not only a discriminatory hallmark of CBCs and PCs, but that its status actively determines lineage commitment during differentiation. Together, our work describes a new signalling-metabolic axis in stem cell differentiation and highlights the importance of mitochondria in determining cell fate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []