Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses

2008 
Intrinsic antioxidant defences are important for neuronal longevity. We show that synaptic activity, acting via NMDA receptor (NMDAR) signaling, boosts antioxidant defences through changes to the thioredoxin-peroxiredoxin system. Synaptic activity enhances thioredoxin activity, facilitates the reduction of overoxidized peroxiredoxins, and promotes resistance to oxidative stress. Resistance is mediated by coordinated transcriptional changes: synaptic NMDAR activity inactivates a novel FOXO target gene, the thioredoxin inhibitor Txnip. Conversely, NMDAR blockade upregulates Txnip in vivo and in vitro, where it binds thioredoxin and promotes vulnerability to oxidative damage. Synaptic activity also up-regulates the peroxiredoxin re-activating genes Sestrin2 and Sulfiredoxin, via C/EBPβ and AP-1 respectively. Mimicking these expression changes is sufficient to strengthen antioxidant defences. Trans-synaptic stimulation of synaptic NMDARs is crucial for boosting antioxidant defences: chronic bath activation of all (synaptic and extrasynaptic) NMDARs induces no antioxidative effects. Thus, synaptic NMDAR activity may influence the progression of pathological processes associated with oxidative damage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    433
    Citations
    NaN
    KQI
    []