Significant soil degradation is associated with intensive vegetablecropping in subtropical area: A case study in southwest China

2021 
Abstract. Within the context of sustainable development, soil degradation driven by land-use change is considered a serious global problem but conversion from growing cereals to vegetables is a change that has received little attention, especially in subtropical regions. Therefore, we compared the nutrient status and soil quality parameters (soil organic carbon [SOC], total nitrogen [TN], C / N ratio, pH, phosphorus [P], potassium [K], calcium [Ca], and magnesium [Mg]) between vegetable fields (VF) and land still used for paddy rice-oilseed rape rotation (PRF) that are typical of southwest China. In the VF, fertilizer application were often several times higher than the crop needs or recommended by the local extension service, thus, the crop use efficiency of N, P, K, Ca, Mg were only 26 %, 8 %, 56 %, 23 % and 28 %, respectively; SOC, C stock, TN, N stock decreased significantly caused by low organic inputs from crop residues and high tillage frequency, and soil C/N ratio decreased slightly; available P (AP) in topsoil increased by 1.92 mg kg−1 for every 100 kg ha−1 of surplus P, and the critical levels of AP and CaCl2-soluble P for P leaching were 104 and 0.80 mg P kg−1. Besides, there was a clear trend of soil acidification in the VF. However, increasing concentrations of soil Ca and Mg significantly alleviated topsoil acidification, with the effect increasing over time. Given our findings, we discuss the potential benefits of conservation agricultural practices, integrated soil-crop system management strategies and agricultural technology services for recovering the degraded soil and improving the vegetable productivity in the VF.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []