Dynamics of Spaetzle morphogen shuttling in the Drosophila embryo shapes pattern

2018 
Establishment of morphogen gradients in the early Drosophila embryo is challenged by a diffusible extracellular milieu, and rapid nuclear divisions that occur at the same time. To understand how a sharp gradient is formed within this dynamic environment, we followed the generation of graded nuclear Dorsal (Dl) protein, the hallmark of pattern formation along the dorso-ventral axis, in live embryos. We show that a sharp gradient is formed through extracellular, diffusion-based morphogen shuttling that progresses through several nuclear divisions. Perturbed shuttling in wntD mutant embryos results in a flat activation peak and aberrant gastrulation. Re-entry of Dl into the nuclei at each cycle refines the signaling output, by guiding graded accumulation of the T48 transcript that drives patterned gastrulation. We conclude that diffusion-based ligand shuttling, coupled with dynamic readout, establishes a refined pattern within the diffusible environment of early embryos.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    2
    Citations
    NaN
    KQI
    []