The effect of Al on the formation and stability of a bcc - B2 microstructure in a refractory metal high entropy superalloy system

2020 
Abstract The development of refractory metal high entropy superalloys has received great interest due to their potential for high temperature structural applications. The formation of a two phase nanoscale microstructure, comprising bcc and ordered B2 phases, is thought to be fundamentally linked to the presence of Al. As such, determining the influence of Al concentration on the microstructural formation and thermal stability of these novel materials is critical for future alloy development. To elucidate this effect, the microstructural evolution of a series of alloys with systematically varying compositions from the Ti-Ta-Zr-Alx system have been studied following homogenisation and long term exposures at 1100, 900 and 700˚C. Nanoscale cuboidal morphologies were observed in all alloys, but ordering was only observed when the bulk Al content was > 5 at.%. These results indicated that a common formation mechanism, thought to be spinodal decomposition, occurred prior to any B2 ordering. The results also showed that the B2 phase was only stable to relatively moderate temperatures,
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    13
    Citations
    NaN
    KQI
    []