language-icon Old Web
English
Sign In

Refractory metals

Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period (niobium and molybdenum) and three of the sixth period (tantalum, tungsten, and rhenium). They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures. Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period (niobium and molybdenum) and three of the sixth period (tantalum, tungsten, and rhenium). They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures. Most definitions of the term 'refractory metals' list the extraordinarily high melting point as a key requirement for inclusion. By one definition, a melting point above 4,000 °F (2,200 °C) is necessary to qualify. The five elements niobium, molybdenum, tantalum, tungsten and rhenium are included in all definitions, while the wider definition, including all elements with a melting point above 2,123 K (1,850 °C), includes a varying number of nine additional elements: titanium, vanadium, chromium, zirconium, hafnium, ruthenium, rhodium, osmium and iridium. The artificial elements, being radioactive, are never considered to be part of the refractory metals, although technetium has a melting point of 2430 K or 2157 °C and rutherfordium is predicted to have melting point of 2400 K or 2100 °C. The melting point of the refractory metals are the highest for all elements except carbon, osmium and iridium. This high melting point defines most of their applications. All the metals are body-centered cubic except rhenium which is hexagonal close-packed. Most physical properties of the elements in this group vary significantly because they are members of different groups. Creep resistance is a key property of the refractory metals. In metals, the starting of creep correlates with the melting point of the material; the creep in aluminium alloys starts at 200 °C, while for refractory metals temperatures above 1500 °C are necessary. This resistance against deformation at high temperatures makes the refractory metals suitable against strong forces at high temperature, for example in jet engines, or tools used during forging. The refractory metals show a wide variety of chemical properties because they are members of three distinct groups in the periodic table. They are easily oxidized, but this reaction is slowed down in the bulk metal by the formation of stable oxide layers on the surface. Especially the oxide of rhenium is more volatile than the metal, and therefore at high temperature the stabilization against the attack of oxygen is lost, because the oxide layer evaporates. They all are relatively stable against acids. Refractory metals are used in lighting, tools, lubricants, nuclear reaction control rods, as catalysts, and for their chemical or electrical properties. Because of their high melting point, refractory metal components are never fabricated by casting. The process of powder metallurgy is used. Powders of the pure metal are compacted, heated using electric current, and further fabricated by cold working with annealing steps. Refractory metals can be worked into wire, ingots, rebars, sheets or foil. Molybdenum based alloys are widely used, because they are cheaper than superior tungsten alloys. The most widely used alloy of molybdenum is the Titanium-Zirconium-Molybdenum alloy TZM, composed of 0.5% titanium and 0.08% of zirconium (with molybdenum being the rest). The alloy exhibits a higher creep resistance and strength at high temperatures, making service temperatures of above 1060 °C possible for the material. The high resistivity of Mo-30W, an alloy of 70% molybdenum and 30% tungsten, against the attack of molten zinc makes it the ideal material for casting zinc. It is also used to construct valves for molten zinc. Molybdenum is used in mercury wetted reed relays, because molybdenum does not form amalgams and is therefore resistant to corrosion by liquid mercury. Molybdenum is the most commonly used of the refractory metals. Its most important use is as a strengthening alloy of steel. Structural tubing and piping often contains molybdenum, as do many stainless steels. Its strength at high temperatures, resistance to wear and low coefficient of friction are all properties which make it invaluable as an alloying compound. Its excellent anti-friction properties lead to its incorporation in greases and oils where reliability and performance are critical. Automotive constant-velocity joints use grease containing molybdenum. The compound sticks readily to metal and forms a very hard, friction resistant coating. Most of the world's molybdenum ore can be found in China, the USA, Chile and Canada.

[ "Metal", "Organic chemistry", "Metallurgy" ]
Parent Topic
Child Topic
    No Parent Topic