The SARS-CoV-2 receptor, Angiotensin converting enzyme 2 (ACE2) is required for human endometrial stromal cell decidualization

2020 
The coronavirus disease 2019 (COVID-19) first appeared in December 2019 and rapidly spread throughout the world. The SARS-CoV-2 virus enters the host cells by binding to the angiotensin-converting enzyme (ACE2). Although much of the focus is on respiratory symptoms, recent reports suggest that SARS-CoV-2 can cause pregnancy complications such as pre-term birth and miscarriages; and women with COVID-19 had maternal vascular malperfusion and decidual arteriopathy in their placentas. Here, we report that ACE2 protein is expressed in both endometrial epithelial and stromal cells in the proliferative phase of the menstrual cycle, and expression increases in stromal cells in the secretory phase. The ACE2 mRNA and protein abundance increased during primary human endometrial stromal cell (HESC) decidualization. Further, HESCs transfected with ACE2-targeting siRNA impaired the full decidualization response, as evidenced by a lack of morphology change and lower expression of the decidualization markers PRL and IGFBP1. Additionally, in mice during pregnancy, ACE2 protein was expressed in uterine epithelial, and stromal cells increased through day six of pregnancy. Finally, progesterone induced Ace2 mRNA expression in mouse uteri more than vehicle or estrogen. These data establish a role for ACE2 in endometrial physiology, suggesting that SARS-CoV-2 may be able to enter endometrial stromal cells and elicit pathological manifestations in women with COVID-19 including an increased risk of early pregnancy loss.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    11
    Citations
    NaN
    KQI
    []