Anderson localization with cold atoms : dynamics in disorder and prospects from chaos

2017 
This thesis theoretically investigates several effects related to Anderson localization, focusing on the context of disordered and chaotic cold-atomic systems. In cold-atomic systems, optical speckle patterns are often used to create the disorder. The resulting potentials felt by the atoms differ from Gaussian random potentials, commonly assumed in the description of condensed-matter systems. In the first part of the thesis, we discuss their specificities, with an emphasis on the spectral properties. Atom-optics experiments offer interesting possibilities, such as the possibility to directly probe the atoms inside the disordered potential. In view of these possibilities, we consider in the second part of the thesis the spreading of matter wave packets initially launched with a non-zero velocity. We find that after an initial ballistic motion, the packet center-of-mass experiences a retroreflection and slowly returns to its initial position, mimicking a boomerang. Atom-atom interactions are then introduced in a third part. We consider dilute condensed bosonic gases, and treat the interactions at the mean-field (Gross-Pitaevskii) level. Various situations are studied numerically, in particular the quantum boomerang scenario, and the dynamical spreading both in momentum and energy of matter waves prepared as plane waves. In the last part, we show that chaotic models offer interesting prospects for the study of Anderson localization. On the one hand, we present strong evidences in favor of a spinless kicked rotor in the sympletic ensemble. On the other hand, a second look at a commonly studied quasi-periodically modulated kicked rotor reveals intriguing results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []