language-icon Old Web
English
Sign In

Anderson localization

In condensed matter physics, Anderson localization (also known as strong localization) is the absence of diffusion of waves in a disordered medium. This phenomenon is named after the American physicist P. W. Anderson, who was the first to suggest that electron localization is possible in a lattice potential, provided that the degree of randomness (disorder) in the lattice is sufficiently large, as can be realized for example in a semiconductor with impurities or defects. Anderson localization is a general wave phenomenon that applies to the transport of electromagnetic waves, acoustic waves, quantum waves, spin waves, etc. This phenomenon is to be distinguished from weak localization, which is the precursor effect of Anderson localization (see below), and from Mott localization, named after Sir Nevill Mott, where the transition from metallic to insulating behaviour is not due to disorder, but to a strong mutual Coulomb repulsion of electrons. In the original Anderson tight-binding model, the evolution of the wave function ψ on the d-dimensional lattice Zd is given by the Schrödinger equation where the Hamiltonian H is given by with Ej random and independent, and potential V(r) falling off as r−2 at infinity. For example, one may take Ej uniformly distributed in , and Starting with ψ0 localised at the origin, one is interested in how fast the probability distribution | ψ | 2 {displaystyle |psi |^{2}} diffuses. Anderson's analysis shows the following: The phenomenon of Anderson localization, particularly that of weak localization, finds its origin in the wave interference between multiple-scattering paths. In the strong scattering limit, the severe interferences can completely halt the waves inside the disordered medium. For non-interacting electrons, a highly successful approach was put forward in 1979 by Abrahams et al. This scaling hypothesis of localization suggests that a disorder-induced metal-insulator transition (MIT) exists for non-interacting electrons in three dimensions (3D) at zero magnetic field and in the absence of spin-orbit coupling. Much further work has subsequently supported these scaling arguments both analytically and numerically (Brandes et al., 2003; see Further Reading). In 1D and 2D, the same hypothesis shows that there are no extended states and thus no MIT. However, since 2 is the lower critical dimension of the localization problem, the 2D case is in a sense close to 3D: states are only marginally localized for weak disorder and a small spin-orbit coupling can lead to the existence of extended states and thus an MIT. Consequently, the localization lengths of a 2D system with potential-disorder can be quite large so that in numerical approaches one can always find a localization-delocalization transition when either decreasing system size for fixed disorder or increasing disorder for fixed system size.

[ "Quantum electrodynamics", "Condensed matter physics", "Quantum mechanics" ]
Parent Topic
Child Topic
    No Parent Topic