In vitro degradation and drug release of a biodegradable tissue adhesive based on functionalized 1,2-ethylene glycol bis(dilactic acid) and chitosan

2013 
Biodegradability and adhesive-associated local drug release are important aspects of research in tissue adhesive development. Therefore, this study focuses on investigating the in vitro degradation and drug release of a tissue adhesive consisting of hexamethylene diisocyanate functionalized 1,2-ethylene glycol bis(dilactic acid) and chitosan chloride. To prevent infections, ciprofloxacin hydrochloride (CPX·HCl) was incorporated into the adhesive. The influence of CPX·HCl on the adhesive reaction and adhesive strength was analyzed by FTIR-ATR-spectroscopy and tensile tests. The CPX·HCl release was investigated by HPLC. The degradation-induced changes at 37 °C were evaluated by gravimetric/morphological analyzes and micro-computer tomography. The antibiotic potential of the CPX·HCl loaded adhesive was determined by agar diffusion tests. The degradation tests revealed a mass loss of about 78 % after 52 weeks. The adhesive reaction velocity and tensile strength were not influenced by CPX·HCl. Using a 2 mg/g CPX·HCl loaded adhesive an inhibition of all tested bacteria was observed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    5
    Citations
    NaN
    KQI
    []