Machine Learning-Based Prediction of Crystal Systems and Space Groups from Inorganic Materials Compositions

2020 
Structural information of materials such as the crystal systems and space groups are highly useful for analyzing their physical properties. However, the enormous composition space of materials makes experimental X-ray diffraction (XRD) or first-principle-based structure determination methods infeasible for large-scale material screening in the composition space. Herein, we propose and evaluate machine-learning algorithms for determining the structure type of materials, given only their compositions. We couple random forest (RF) and multiple layer perceptron (MLP) neural network models with three types of features: Magpie, atom vector, and one-hot encoding (atom frequency) for the crystal system and space group prediction of materials. Four types of models for predicting crystal systems and space groups are proposed, trained, and evaluated including one-versus-all binary classifiers, multiclass classifiers, polymorphism predictors, and multilabel classifiers. The synthetic minority over-sampling technique ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    19
    Citations
    NaN
    KQI
    []