Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes

2015 
Electro-absorption modulators based on electrically contacted double-layer graphene optimally incorporated in plasmonic and photonic waveguide configurations were simulated and analyzed in terms of the device performance at telecom wavelengths. It is shown that increasing the mode electric field strength on the graphene layers enhances absorption of graphene and, in consequence, improves the electro-optic performances. The ratio of the change in extinction ratio and the waveguide loss (Δα/α) is used as a figure of merit. A plasmonic waveguide configuration with a silicon ridge has a simulated 3 dB modulation depth for a device length of ~140 nm and Δα/α ~ 20. The calculated energy consumption per bit is as low as ~240 aJ bit−1 and ~1.8 aJ bit−1 for plasmonic modulators with polymer and silicon ridge waveguides respectively. Much higher figures of merit were obtained for modulators based on photonic waveguides with Δα/α exceeding 220 for a waveguide with a TM-supported mode. This comes at the cost of the modulator length, which increases to over 500 nm, and the calculated energy per bit of 1.93 fJ bit−1 for polymer and ~10.3 aJ bit−1 for silicon waveguides. The photonic waveguides were designed to support both TM and TE modes. The TE mode requires a much longer modulation length of ~10 µm to achieve a 3 dB modulation depth and shows a lower figure of merit of ~12 compared to the TM mode, but has a low energy per bit of ~44.0 aJ bit−1. The TE mode is in the OFF state at low applied voltage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    20
    Citations
    NaN
    KQI
    []