Tunable Terahertz Plasmon-Induced Transparency in Resonator-Coupled Dirac Semimetal Waveguides
2021
The bulk Dirac semimetal (BDS) is an interesting material, similar to graphene, which can dynamically adjust its optical properties via a variation in its Fermi energy or electrical voltage. In this work, a BDS-based plasmonic device, which enables tunable terahertz plasmon-induced transparency, was proposed and designed. By using the finite element method, the surface plasmon polariton and plasmon-induced transparency of this device were systematically investigated. The results demonstrate that the plasmoninduced transparency of such device can be dynamically tuned by varying its Fermi energy. When the Fermi energy changes from 55 meV to 95 meV, the maximum group delay time of the device increases from 13.2 ps to 21 ps. In the case of a cascading device, the maximum group delay time can be further pushed up to 44.57 ps. The influence of the ambient refractive index on the optical properties of the proposed device was also considered and investigated.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
34
References
0
Citations
NaN
KQI