Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure

2019 
In this paper, strong longitudinal coupling of the Tamm plasmon polaritons (TPPs) is investigated in a graphene/DBR/Ag slab hybrid system. It is found that TPPs can be excited at both the top graphene and the bottom silver slab interface, which can strongly interact with each other in this coupled structure. Numerical simulation results demonstrate that the vertical Tamm plasmon coupling can be either tuned by adjusting the geometric parameters or actively controlled by the Fermi energy in graphene sheet as well as the incident angle of light, allowing for strong light-matter interaction with a tunable dual-band perfect absorption. Moreover, the coupling strength of the hybrid modes exhibits a large tuning range, from a large Rabi splitting to an extremely narrow induced transparency in this coupled regime. Coupled mode theory has been employed to explain the strong coupling phenomenon. The controllable TPP coupling with an ultrahigh dual-band absorption capability offered by this simple layered structure opens new avenues for developing a broad range of graphene-based active optoelectronic and polaritonic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    20
    Citations
    NaN
    KQI
    []