Characterisation of ovine bone marrow-derived stromal cells (oBMSC) and evaluation of chondrogenically induced micro-pellets for cartilage tissue repair in vivo

2020 
Background: Bone marrow stromal cells (BMSC) show promise in cartilage repair, and sheep are the most common large animal pre-clinical model. The objective of this study was to characterize ovine BMSC (oBMSC) in vitro, and to evaluate the capacity of chondrogenic micro-pellets manufactured from oBMSC or ovine articular chondrocytes (oACh) to repair osteochondral defects in sheep. Methods: oBMSC were characterised for surface marker expression using flow cytometry and evaluated for tri-lineage differentiation. oBMSC micro-pellets were manufactured in a microwell platform, and chondrogenesis was compared at 2%, 5%, and 20% O2. The capacity of cartilage micro-pellets manufactured from oBMSC or oACh to repair osteochondral defects in adult sheep was evaluated in an 8-week pilot study. Expanded oBMSC were positive for CD44 and CD146 and negative for CD45. Results: The common adipogenic induction ingredient, 3-Isobutyl-1-methylxanthine (IBMX), was toxic to oBMSC, but adipogenesis could be restored by excluding IBMX. BMSC chondrogenesis was optimal in a 2% O2 atmosphere. Micro-pellets formed from oBMSC or oACh appeared morphologically similar, but hypertrophic genes were elevated in oBMSC micro-pellets. While oACh micro-pellets formed cartilage-like repair tissue in sheep, oBMSC micro-pellets did not. Conclusion: The sensitivity of oBMSC to IBMX in standard adipogenic assays with human BMSC, highlights species-associated differences. Micro-pellets manufactured from oBMSC were not effective in repairing osteochondral defects, compared with oACh micro-pellets, in sheep. While oBMSC can be driven to form cartilage-like tissue in vitro, the effective use of these cells in cartilage repair will depend on the successful mitigation of hypertrophy and tissue integration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    1
    Citations
    NaN
    KQI
    []