Pleistocene and Holocene aeolian facies along the Huelva coast (southern Spain): climatic and neotectonic implications

1998 
The stratigraphic relationships, genesis and chronology, including radiocarbon dating, of the Quaternary sandy deposits forming the El Asperillo cliffs (Huelva) were studied with special emphasis on the influence of neotectonic activity, sea-level changes and climate upon the evolution of the coastal zone. The E-W trending normal fault of Torre del Loro separates two tectonic blocks. The oldest deposits occur in the upthrown block. They are Early to Middle Pleistocene fluviatile deposits, probably Late Pleistocene shallow-marine deposits along an E-W trending shoreline, and Late Pleistocene and Holocene aeolian sands deposited under prevailing southerly winds. Three Pleistocene and Holocene aeolian units accumulated in the downthrown block. Of these, Unit 1, is separated from the overlying Unit 2 by a supersurface that represents the end of the Last Interglacial. Accumulation of Unit 2 took place during the Last Glacial under more arid conditions than Unit 1. The supersurface separating Units 2 and 3 was formed between the Last Glacial maximum at 18 000 14C yr BP and ca. 14 000 14C yr BP, the latter age corresponding to an acceleration of the rise of sea level. Unit 3 records wet conditions. The supersurface separating Units 3 and 4 fossilised the fault and the two fault blocks. Units 4 (deposited before the 4th millennium BC), 5 (> 2700 14C yr BP to 16th century) and 6 (16th century to present) record relatively arid conditions. Prevailing wind directions changed with time from W (Units 2–4) to WSW (Unit 5) and SW (Unit 6).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    38
    Citations
    NaN
    KQI
    []