Modeling the thermal effect of the bipolar electrocautery for neurosurgery simulation

2011 
Real-time surgical simulation requires computationally-fast models describing the interaction between surgical instrument and tissues. In this study, a model for predicting the temperature distribution in brain tissue when using a bipolar electrocautery is proposed and validated against experimental in vitro animal data. Joule heat generation and heat conduction in the tissue are considered. The agreement between simulated temperature distributions and experimental data could be improved by modeling the output power as a function of electrical resistance between the electrodes, and by considering the heat exchange with surrounding air and bipolar tips.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []