Electron-impact dissociative ionization of the molecular ion HDO+: A global view
2014
We present a combined experimental and theoretical study of the fragmentation of HDO2+ molecular ions produced by electron-impact ionization of HDO+ in the collision energy range 20–2500 eV. Experimental absolute partial inclusive cross sections for the production of OD+, OH+, and O+ are reported and compared successfully to theoretical predictions. Ab initio methods are used to calculate the electron-impact ionization cross sections of the cationic ground state and first excited state leading to the first seven dicationic states. Dissociation probabilities of each channel are obtained by performing classical molecular dynamics on fitted dicationic potential energy surfaces. The predictive character of the theoretical modeling allows us to estimate that the nonmeasured dissociation channel giving a neutral oxygen atom contributes to 30% of the total ionization cross section. The isotopic ratio OD+/OH+ educed from the experiment is (3.1 ± 0.2) on average, constant in the 30–2500 eV energy range. The calculated isotopic ratio is found to be strongly dependent on the vibrational excitation of the target. Good agreement with the experimental value is obtained for a vibrational excitation corresponding to a temperature of about 2500 K, which is compatible with typical characteristics of electron cyclotron resonance (ECR) ion sources.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
3
Citations
NaN
KQI