Nanoencapsulation of Cyanidin-3-O-glucoside Enhances Protection Against UVB-induced Epidermal Damage through Regulation of p53-mediated Apoptosis in Mice

2018 
Excess ultraviolet (UV) radiation causes numerous forms of skin damage. The aim of the present study was to assess and compare the photoprotective effects of cyanidin-3-O-glucoside (C3G) alone and encapsulated in chitosan nanoparticles (Nano-C3G) in a UVB-induced acute photodamage mouse model. Nano-C3G was developed from chitosan and sodium tripolyphosphate (TPP) by ionic gelation. The particle size, zeta potential, entrapment efficiency, drug loading, and in vitro release in 6 days were determined. Kunming (KM) mice were treated with Nano-C3G (125, 250, 500 μM) or C3G (500 μM) after part of the dorsal skin area was dehaired and then exposed to 2 J/cm2 of UVB. The nanocapsules were successfully produced and had a uniform and complete spherical shape without agglomeration. The size, zeta potential, entrapment efficiency, and drug loading of Nano-C3G was 288 nm, +30 mV, 44.90%, and 4.30%, respectively. C3G in the nanocapsules was released quite rapidly, and the release rate slowed down at higher pH. The ani...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    23
    Citations
    NaN
    KQI
    []