Fe2O3 Microcubes Derived from Metal–Organic Frameworks for Lithium-Ion Storage with Excellent Performance

2021 
Transition metal oxides are regarded as a potential electrode material for lithium-ion storage due to it features high theoretical capacity and low cost. In this study, the possibility of Fe2O3 microcubes as an electrode material for lithium-ion storage was investigated, where the anode electrode of Fe2O3 microcubes were created through Prussian blue (PB) metal–organic frameworks (MOFs) and followed by the calcination process at high temperature. The results showed that the Fe2O3 microcubes electrode obtained by the calcination process at 500 °C exhibited superior electrochemical performances than that of Fe2O3 obtained by the calcination process at 700 °C. The increase in calcination temperature will lead to the further sintering reaction between the particles and the formation of cracks and voids in crystals that eventually lead to the breakup of microcube and so lower stable structure of the Fe2O3 microcubes electrode. Fe2O3 microcubes exhibited an excellent/stable lithium storage performance and thus is a promising anode material for LIBs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []