Enhancement of Renal Epithelial Cell Functions through Microfluidic-Based Coculture with Adipose-Derived Stem Cells

2013 
Current hemodialysis has functional limitations and is insufficient for renal transplantation. The bioartificial tubule device has been developed to contribute to metabolic functions by implanting renal epithelial cells into hollow tubes and showed a higher survival rate in acute kidney injury patients. In healthy kidney, epithelial cells are surrounded by various types of cells that interact with extracellular matrices, which are primarily composed of laminin and collagen. The current study developed a microfluidic coculture platform to enhance epithelial cell function in bioartificial microenvironments with multiple microfluidic channels that are microfabricated by polydimethylsiloxane. Collagen gel (CG) encapsulated with adipose-derived stem cells (CG-ASC) was injected into a central microfluidic channel for three-dimensional (3D) culture. The resuspended Madin-Darby canine kidney (MDCK) cells were injected into nascent channels and formed an epithelial monolayer. In comparison to coculture different c...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    32
    Citations
    NaN
    KQI
    []