Thermal decomposition of the ammonium zinc acetate citrate precursor for aqueous chemical solution deposition of ZnO

2002 
The thermal decomposition of an aqueous chemical solution deposition Zn2+-precursor is studied by HT-DRIFT (high temperature diffuse reflectance infrared Fourier transform spectroscopy), on-line coupled TGA-EGA (thermogravimetric analysis - evolved gas analysis by Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS)), and HT-XRD (high temperature X-ray diffraction). Using these complementary techniques, it is found that the α-hydroxyl group of the citrate ligand plays a significant role in the decomposition pathway of the ammonium zinc acetate citrate precursor. TEM (transmission electron microscopy) shows that crystalline ZnO (zincite) is formed at 390°C, after dehydroxylation of the α-hydroxyl group and subsequent decarboxylation of the Zn2+-precursor complex. Before total calcination, ZnO particles are already formed and a residual organic backbone thereby remains. The results obtained by these complementary techniques clearly indicate the importance of thermal analysis in the preparation of ceramics through chemical solution deposition.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    74
    Citations
    NaN
    KQI
    []