language-icon Old Web
English
Sign In

Evolved gas analysis

Evolved gas analysis (EGA) is a method used to study the gas evolved from a heated sample that undergoes decomposition or desorption. It is either possible just to detect evolved gases using evolved gas detection (EGD) or to analyse explicitly which gases evolved using evolved gas analysis (EGA). Therefor different analytical methods can be employed such as mass spectrometry, Fourier transform spectroscopy, gas chromatography, or optical in-situ evolved gas analysis. Evolved gas analysis (EGA) is a method used to study the gas evolved from a heated sample that undergoes decomposition or desorption. It is either possible just to detect evolved gases using evolved gas detection (EGD) or to analyse explicitly which gases evolved using evolved gas analysis (EGA). Therefor different analytical methods can be employed such as mass spectrometry, Fourier transform spectroscopy, gas chromatography, or optical in-situ evolved gas analysis. By coupling the thermal analysis instrument, e. g. TGA (thermogravimetry) or DSC (differential scanning calorimetry), with a fast Quadrupole Mass Spectrometer (QMS) the detection of gas separation and identification of the separated components are possible in exact time correlation with the other thermal analysis signals. DSC/TGA-QMS or TGA-QMS yields information on the composition (mass numbers of elements and molecules) of the evolved gases. It allows fast and easy interpretation of atomic/inorganic vapors and standard gases like H2, H2O, CO2, etc. Fragmentation, interpretation of organic molecules is sometimes difficult.

[ "Pyrolysis", "Thermogravimetry", "Thermogravimetric analysis", "Thermal analysis", "Thermal decomposition" ]
Parent Topic
Child Topic
    No Parent Topic