GPx3 dysregulation impacts adipose tissue insulin receptor expression and sensitivity.

2020 
: Insulin receptor signaling is crucial for white adipose tissue (WAT) function. Consequently, lack of insulin receptor (IR) in WAT results in a diabetes-like phenotype. Yet, causes for IR downregulation in WAT of diabetic patients are not well understood. By using multiple mouse models of obesity and insulin resistance, we identify a common downregulation of the IR with a reduction of mRNA expression of the selenoproteins Txnrd3, Sephs2, and Gpx3. Consistently, GPX3 is also decreased in adipose tissue of insulin resistant and obese patients. Inducing Gpx3 expression via selenite treatment enhances IR expression via activation of the transcription factor Sp1 in 3T3-L1 preadipocytes and improves adipocyte differentiation and function. Feeding mice a selenium-enriched high-fat diet alleviates diet-induced insulin resistance with increased insulin sensitivity, decreased tissue inflammation and elevated IR expression in WAT. Again, IR expression correlates positively with Gpx3 expression, a phenotype which is also conserved in humans. Consequently, decreasing GPx3 using siRNA technique reduces IR expression in 3T3-L1 preadipocytes and insulin sensitivity. Overall our data identify GPx3 as a novel regulator of IR expression and insulin sensitivity in adipose tissue.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    10
    Citations
    NaN
    KQI
    []