High glucose concentration suppresses a SIRT2 regulated pathway that enhances neurite outgrowth in cultured adult sensory neurons

2018 
Abstract In peripheral nerve under hyperglycemic conditions high flux of d -glucose through the polyol pathway drives an aberrant redox state contributing to neurodegeneration in diabetic sensorimotor polyneuropathy (DSPN). Sirtuins, including SIRT2, detect the redox state via the NAD + /NADH ratio to regulate mitochondrial function via, in part, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). In adult dorsal root ganglia (DRG) sensory neurons mitochondrial dysfunction has been proposed as an etiological factor in dying-back neuropathy in diabetes. We tested the hypothesis that a high concentration of d -glucose depleted SIRT2 expression via enhancement of polyol pathway activity. We posited that this would lead to impaired mitochondrial function and suppression of neurite outgrowth in cultured sensory neurons. The use of dominant negative mutants or neurons from SIRT2 knockout (KO) mice to block SIRT2 signaling revealed that neurons derived from control or type 1 diabetic rodents required SIRT2 for optimal neurite outgrowth. Over-expression of WT-SIRT2 elevated neurite outgrowth in normal and diabetic cultures. SIRT2 protein isoforms 2.1 and 2.2 were reduced by 20–30% in DRG of type 1 diabetic mice ( p d -glucose (25 mM vs 5 mM) cultured sensory neurons showed a significant 2-fold ( p p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    6
    Citations
    NaN
    KQI
    []