The delivery of hsa-miR-11401 by extracellular vesicles can relieve doxorubicin-induced mesenchymal stem cell apoptosis.

2021 
BACKGROUND Chemotherapy is an effective anti-tumor treatment. Mesenchymal stem cells (MSCs), exerting therapy effect on injured tissues during chemotherapy, may be damaged in the process. The possibility of self-healing through long-range paracrine and the mechanisms are unclear. METHODS Doxorubicin, a commonly used chemotherapy drug, was to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) for 6 h as an in vitro cell model of chemotherapy-induced damage. Then we use extracellular vesicles derived from placental mesenchymal stem cells (hP-MSCs) to investigate the therapeutic potential of MSCs-EVs for chemotherapy injury. The mechanism was explored using microRNA sequencing. RESULTS MSC-derived extracellular vesicles significantly alleviated the chemotherapy-induced apoptosis. Using microRNA sequencing, we identified hsa-miR-11401, which was downregulated in the Dox group but upregulated in the EV group. The upregulation of hsa-miR-11401 reduced the expression of SCOTIN, thereby inhibiting p53-dependent cell apoptosis. CONCLUSIONS Hsa-miR-11401 expressed by MSCs can be transported to chemotherapy-damaged cells by EVs, reducing the high expression of SCOTIN in damaged cells, thereby inhibiting SCOTIN-mediated apoptosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    2
    Citations
    NaN
    KQI
    []