Advances in understanding the “Perfect Monsoon-influenced Typhoon”: Summary from International Conference on Typhoon Morakot (2009)

2011 
Typhoon Morakot (2009) produced 2855 mm of rain and was the deadliest typhoon to impact Taiwan with 619 deaths and 76 missing persons, including a landslide that wiped out an entire village. While Morakot did not exceed the heaviest 24-h rain record, the combination of heavy rain and long duration that led to the record accumulation is attributed to the southwest summer monsoon influence on the typhoon. Thus, a special combination of factors was involved in the Morakot disaster: (i) Strong southwesterly monsoon winds; (ii) Convergence between the typhoon circulation and monsoon flow to form an east-west oriented convective band over the Taiwan Strait that was quasi-stationary and long-lasting; (iii) A typhoon in a specific location relative to the Central Mountain Range and moving slowly; and (iv) Steep topography that provided rapid lifting of the moist air stream. The contributions of each of these four factors in leading to the Morakot disaster are reviewed primarily based on new research presented at the International Conference on Typhoon Morakot (2009). Historical data sets, new Doppler radar observations, and numerical modeling have advanced the understanding of the special conditions of monsoon-influenced typhoons such as Morakot. This research is also leading to modifications of existing and development of new forecasting tools. Gaps in scientific understanding, limits to the predictability, and requirements for advanced forecast guidance tools are described that are challenges to improved warnings of these extreme precipitation and flooding events in monsoon-influenced typhoons.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    23
    Citations
    NaN
    KQI
    []