The effects of chitosan-based materials on glioma: Recent advances in its applications for diagnosis and treatment.

2021 
Abstract Glioma is known as the most common primary brain tumor occurring in adolescents and is considered as a lethal disease worldwide. Despite the advancements in presently available therapeutic approaches (i.e. radiation therapy and chemotherapy), the rate of amelioration in glioma patients is still low. In this regard, it seems that there is a need for reconsidering and enhancing current therapies and/or discovering novel therapeutic platforms. Chitosan is a natural polysaccharide with several beneficial characteristics, including biocompatibility, biodegradability, and low toxicity. Without causing toxic effects on healthy cells, chitosan nanoparticles are attractive targets in cancer therapy which lead to the sustained release and enhanced internalization of chemotherapeutic drugs as well as higher cytotoxicity for cancer cells. Hence, these properties turn it into a suitable candidate for the treatment of various cancers, including glioma. In the viewpoint of glioma, cancer inhibition is possible through targeting glioma-associated signaling pathways and molecules such as MMP-9, VEGF, TRAIL and nuclear factor-κB by chitosan and its derivatives. Moreover, it has been acknowledged that chitosan and its derivatives can be applied as a delivery system for carrying a diverse range of therapeutic agents to the tumor site. Besides the anti-glioma effects of chitosan and its derivatives, these molecules can be utilized for culturing glioma cancer cells; providing a better understanding of glioma pathogenesis. Furthermore, it is documented that 3D chitosan scaffolds are potential targets that offer advantageous drug screening platforms. Herein, we summarized the anti-glioma effects of chitosan and also its utilization as drug delivery systems in the treatment of glioma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    102
    References
    2
    Citations
    NaN
    KQI
    []