Serum- and Glucocorticoid-induced Protein Kinase 1 (SGK1) is Regulated by Store-Operated Ca2+ Entry and Mediates Cytoprotection Against Necrotic Cell Death

2013 
Serum and glucocorticoid-regulated kinase 1 (SGK1) encodes a phosphatidylinositol 3-kinase-dependent serine/threonine kinase that is rapidly induced in response to cellular stressors and is an important cell survival signal. Previous studies have suggested that an increase in cytoplasmic Ca2+ concentration ([Ca2+]c) is required for increased SGK1 expression, but the subcellular source of Ca2+ regulating SGK1 transcription remains uncertain. Activation of endoplasmic reticulum stress (ERS) with thapsigargin (TG) increased SGK1 mRNA and protein expression in MDA-MB-231 cells. Intracellular Ca2+ imaging revealed that store-operated Ca2+ entry played a prominent role in SGK1 induction by TG. Neither ERS nor release of Ca2+ from the ER was sufficient to activate SGK1. Prolonged elevation of intracellular Ca2+ levels, however, triggered cell death with a much greater proportion of the cells undergoing necrosis rather than apoptosis. A relative increase in the percentage of cells undergoing necrosis was observed in cells expressing a short hairpin RNA targeted to the SGK1 gene. Necrotic cell death evoked by cytoplasmic Ca2+ overloading was associated with persistent hyperpolarization of the inner mitochondrial membrane and a modest increase in calpain activation, but did not involve detectable caspase 3 or caspase 7 activation. The effects of cytoplasmic Ca2+ overloading on mitochondrial membrane potential were significantly reduced in cells expressing SGK1 compared with SGK1-depleted cells. Our findings indicate that store-operated Ca2+ entry regulates SGK1 expression in epithelial cells and suggest that SGK1-dependent cytoprotective signaling involves effects on maintaining mitochondrial function.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    11
    Citations
    NaN
    KQI
    []