Calligraphed Selective Plasmonic Arrays on Paper Platforms for Complementary Dual Optical "ON/OFF Switch" Sensing.

2020 
Designing innovative (nano)detection platforms, respecting their low-cost and fabrication simplicity, capable to chemically detect multiple target analytes by employing the same engineered device, is still a great challenge in the multiplexed biosensor development. In this scientific context, in the current manuscript, we exploit the low-cost plasmonic calligraphy as a versatile approach to directly draw continuous plasmonic lines on Whatman paper using a regular ballpoint pen successively filled with two different anisotropic nanoparticles shapes (gold bipyramids—AuBPs and gold nanorods—AuNRs) as colloidal inks. After the efficient immobilization of the positively-charged AuBPs and AuNRs onto the paper fibres, proved by Scanning Electron Microscopy (SEM) investigations, the specificity of our as-calligraphed-paper platform is ensured by coating the selected lines with a thin layer of anionic poly(styrene sulfonate) polyelectrolyte, creating, consequently, a well-defined plasmonic array of charge-selective regions. Finally, the functionality of the well-isolated and as-miniaturized active plasmonic array is, subsequently, tested using the anionic Rose-Bengal and cationic Rhodamine 6G target analytes and proved by complementary dual optical "ON/OFF Switch” sensing (i.e. Surface-enhanced Raman Scattering sensing/metal-enhanced fluorescence sensing) onto the same plasmonic line, developing thus a simple multiplexed plasmonic array platform, which could further facilitate the well-desired biomarker detection in complex mixtures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []