Validation of a CFD model of an orbiting culture dish with PIV and analytical solutions

2017 
Particle image velocimetry (PIV) and an extended solution of Stokes’ second problem were used to validate a computational fluid dynamics (CFD) model of flow in an orbiting dish. Velocity vector components throughout one complete orbit differed between CFD and PIV by less than 5%. Computational velocity magnitudes averaged over the interior 20% radius, the region where the analytical solution is most applicable, were 0.3% higher than the analytical values, while the experimental values in the same region were 2.4% higher. Velocity profiles in the center of the dish across normalized heights that most influence wall shear stress varied on average by ∼–0.00046 for the normalized radial component and by ∼0.0038 for the normalized tangential component compared to the analytical solution. These results represent the most comprehensive validation to date for computational models of the orbiting dish system. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4233–4242, 2017
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    11
    Citations
    NaN
    KQI
    []