Autophosphorylation of carboxy‐terminal residues inhibits the activity of protein kinase CK1α

2009 
CK1 constitutes a protein kinase subfamily that is involved in many important physiological processes. However, there is limited knowledge about mechanisms that regulate their activity. Isoforms CK1δ and CK1e were previously shown to autophosphorylate carboxy-terminal sites, a process which effectively inhibits their catalytic activity. Mass spectrometry of CK1α and splice variant CK1αL has identified the autophosphorylation of the last four carboxyl-end serines and threonines and also for CK1αS, the same four residues plus threonine-327 and serine-332 of the S insert. Autophosphorylation occurs while the recombinant proteins are expressed in Escherichia coli. Mutation of four carboxy-terminal phosphorylation sites of CK1α to alanine demonstrates that these residues are the principal but not unique sites of autophosphorylation. Treatment of autophosphorylated CK1α and CK1αS with λ phosphatase causes an activation of 80–100% and 300%, respectively. Similar treatment fails to stimulate the CK1α mutants lacking autophosphorylation sites. Incubation of dephosphorylated enzymes with ATP to allow renewed autophosphorylation causes significant inhibition of CK1α and CK1αS. The substrate for these studies was a synthetic canonical peptide for CK1 (RRKDLHDDEEDEAMS*ITA). The stimulation of activity seen upon dephosphorylation of CK1α and CK1αS was also observed using the known CK1 protein substrates DARPP-32, β-catenin, and CK2β, which have different CK1 recognition sequences. Autophosphorylation effects on CK1α activity are not due to changes in Kmapp for ATP or for peptide substrate but rather to the catalytic efficiency per pmol of enzyme. This work demonstrates that CK1α and its splice variants can be regulated by their autophosphorylation status. J. Cell. Biochem. 106: 399–408, 2009. © 2008 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    25
    Citations
    NaN
    KQI
    []