A Control-Oriented Dynamical Model of Deposited Droplet Volume in Electrohydrodynamic Jet Printing

2020 
Electrohydrodynamic jet printing (e-jet printing) is a nascent additive manufacturing process most notable for extremely high resolution printing and having a vast portfolio of printable materials. These capabilities make e-jet printing promising for applications such as custom electronics and biotechnology fabrication. However, reliably fulfilling e-jet printing’s potential for high resolution requires delicate control of the volume deposited by each jet. Such control is made difficult by a lack of models that both capture the dynamics of volume deposition and are compatible with the control schemes relevant to e-jet printing. This work delivers such a model. Specifically, this work introduces a definition of “droplet volume” as a dynamically evolving variable rather than a static variable, and uses this definition along with analysis of high speed microscope videos to develop a hybrid dynamical system model of droplet volume evolution. This model is validated with experimental data, which involves the contribution of a novel technique for extracting consistent droplet volume measurements from videos.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []