The Reduced Plastid-Encoded Polymerase-Dependent Plastid Gene Expression Leads to the Delayed Greening of the Arabidopsis fln2 Mutant

2013 
In Arabidopsis leaf coloration mutants, the delayed greening phenomenon is common. Nonetheless, the mechanism remains largely elusive. Here, a delayed greening mutant fln2–4 of FLN2 (Fructokinase-Like Protein2) was studied. FLN2 is one component of Transcriptionally Active Chromosome (TAC) complex which is thought to contain the complete plastid-encoded polymerase (PEP). fln2–4 displayed albino phenotype on medium without sucrose. The PEP-dependent plastid gene expression and chloroplast development were inhibited in fln2–4. Besides interacting with thioredoxin z (TRX z), we identified that FLN2 interacted with another two members of TAC complex in yeast including its homologous protein FLN1 (Fructokinase-Like Protein1) and pTAC5. This indicates that FLN2 functions in regulation of PEP activity associated with these TAC components. fln2–4 exhibited delayed greening on sucrose-containing medium. Comparison of the PEP-dependent gene expression among two complete albino mutants (trx z and ptac14), two yellow mutants (ecb2–2 and ys1) and the fln2–4 showed that fln2–4 remains partial PEP activity. FLN2 and FLN1 are the target proteins of TRX z involved in affecting the PEP activity. Together with the data that FLN1 could interact with itself in yeast, FLN1 may form a homodimer to replace FLN1–FLN2 as the TRX z target in redox pathway for maintaining partial PEP activity in fln2–4. We proposed the partial PEP activity in the fln2 mutant allowed plastids to develop into fully functional chloroplasts when exogenous sucrose was supplied, and finally the mutants exhibited green phenotype.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    21
    Citations
    NaN
    KQI
    []