In situ energy-dispersive x-ray diffraction system for time-resolved thin-film growth studies

2003 
Energy-dispersive x-ray diffraction (EDXRD) with synchrotron light can be used for in situ-structural analysis during polycrystalline thin-film growth, due to its fast data collection and the fixed diffraction angle. An in situ deposition and analysis set-up for the investigation of nucleation and growth of thin films during magnetron sputtering was constructed and installed at the synchrotron radiation source Hamburger Synchrotronstrahlungs Labor (Hamburg). The polychromatic synchrotron beam passes the sputtering chamber through Kapton windows and hits the substrate with the growing film. The diffracted beam, observed under a fixed diffraction angle of between 1? and 10? was energy-analysed by a high-purity germanium detector. The measurement time for a single XRD spectrum can be as short as 10 s for a beam line at a bending magnet, which allows a time-resolved monitoring of film growth. The performance of the in situ EDXRD set-up is demonstrated for the growth of zinc oxide and tin-doped indium oxide films prepared by reactive magnetron sputtering from ceramic and metallic targets. From the position and the width of the diffraction lines the internal mechanical strain and the grain size of the growing films can be derived. The prospects for thin-film growth investigations using such an instrument are assessed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    37
    Citations
    NaN
    KQI
    []