High Precision Individual Tree Diameter and Perimeter Estimation from Close-Range Photogrammetry

2018 
Close-range photogrammetry (CRP) can be used to provide precise and detailed three-dimensional data of objects. For several years, CRP has been a subject of research in forestry. Several studies have focused on tree reconstruction at the forest stand, plot, and tree levels. In our study, we focused on the reconstruction of trees separately within the forest stand. We investigated the influence of camera lens, tree species, and height of diameter on the accuracy of the tree perimeter and diameter estimation. Furthermore, we investigated the variance of the perimeter and diameter reference measurements. We chose four tree species (Fagus sylvatica L., Quercus petraea (Matt.) Liebl., Picea abies (L.) H. Karst. and Abies alba Mill.). The perimeters and diameters were measured at three height levels (0.8 m, 1.3 m, and 1.8 m) and two types of lenses were used. The data acquisition followed a circle around the tree at a 3 m radius. The highest accuracy of the perimeter estimation was achieved when a fisheye lens was used at a height of 1.3 m for Fagus sylvatica (root mean square error of 0.25 cm). Alternatively, the worst accuracy was achieved when a non-fisheye lens was used at 1.3 m for Quercus petraea (root mean square error of 1.27 cm). The tree species affected the estimation accuracy for both diameters and perimeters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    20
    Citations
    NaN
    KQI
    []