MRG15, a component of HAT and HDAC complexes, is essential for proliferation and differentiation of neural precursor cells

2009 
Neurogenesis during development depends on the coordinated regulation of self-renewal and differentiation of neural precursor cells. Chromatin regulation is a key step in self-renewal activity and fate decision of neural precursor cells. However, the molecular mechanism(s) of this regulation is not fully understood. Here, we demonstrate for the first time that MRG15, a chromatin regulator, is important for proliferation and neural fate decision of neural precursor cells. Neuroepithelia from Mrg15 deficient embryonic brain are much thinner than those from control, and apoptotic cells increase in this region. We isolated neural precursor cells from Mrg15 deficient and wild-type embryonic whole brains and produced neurospheres to measure the self-renewal and differentiation abilities of these cells in vitro. Neurospheres culture from Mrg15 deficient embryo grew less-efficiently than those from wild-type. Measurement of proliferation, using BrdU incorporation, revealed that Mrg15 deficient neural precursor cells have reduced proliferation ability and apoptotic cells do not increase during in vitro culture. The reduced proliferation of Mrg15 deficient neural precursor cells most likely accounts for the thinner neuroepithelia in Mrg15 deficient embryonic brain. Moreover, we also demonstrate Mrg15 deficient neural precursor cells are defective in differentiation into neurons in vitro. Our results demonstrate that MRG15 has more than one function in neurogenesis and defines a novel role for this chromatin regulator that integrates proliferation and cell-fate determination in neurogenesis during development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    30
    Citations
    NaN
    KQI
    []