The local structure in heavily boron-doped diamond and the effect this has on its electrochemical properties

2018 
Abstract Transmission electron microscopy (TEM) coupled with electron energy loss spectroscopy (EELS), and first principles calculations of EEL spectra were utilized to elucidate the relationship between the microscopic structure and the electrochemical properties of heavily boron-doped diamond (h-BDD). The electrochemical properties of h-BDD containing 1 at.% and 3 at.% boron are very different. TEM observations showed that 1 at.% h-BDD consists of small densely packed diamond crystallites, while 3 at.% h-BDD contains small voids and a graphite phase partly along the grain boundaries. The EEL spectrum of the grain interior in 1 at.% h-BDD and comparison of this with a theoretical spectrum shows that the boron atoms are mostly dispersed as single isolated substitutional atoms on diamond lattice sites in the grain interior and that only a small amount of sp 2 -bonded carbon is present. In contrast, in the grain interior of 3 at.% h-BDD, the boron atoms are mostly associated with nearest neighbor boron pairs, and consequently sp 2 -bonded carbon is formed. Thus, the local structure has a significant effect on the amount of sp 2 -bonded carbon. The quite different electrochemical properties of the samples are ascribed to the amount of sp 2 -bonding arising from the different local structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    20
    Citations
    NaN
    KQI
    []