The structure and functionality of communities and food webs in streams along the epigean–hypogean continuum: unifying ecological stoichiometry and metabolic theory of ecology
2021
Subterranean streams represent unique heterotrophic ecosystems, usually supported by organic matter imported from the surface. Traditionally, the biological communities from subterranean streams were characterized as simple associations, with low diversity and species abundance, comprising mostly aquatic invertebrates connected by few trophic links compared with those of the surface. However, these features have not yet been described in the wider context of fluxes of energy and nutrients through food webs along a gradual switch from autotrophy (dominated by photosynthesis) towards heterotrophy (dominated by detritus) following the surface–subterranean continuum. Combining the most recent predictions of Ecological Stoichiometry and the Metabolic Theory of Ecology, this article provides a theoretical framework aiming to explain the patterns observed along the surface–subterranean continuum in streams. It is predicted that the main factors constraining the structure and functioning of communities and food webs are the decline in the quantity and diversity of basal resources along this gradient, along with nutrients availability in water that affects food quality. With increasing availability of dissolved nutrients in water, sinking-cave streams are hypothesized to fluctuate between being N and/ or P co-limited to C-limited. Combined, the quantity, quality, and diversity of basal resources regulate subterranean aquatic communities through bottom–up mechanisms, reflected in a decreased flux of macronutrients through food webs. The consequences of these bottom–up effects are decreased abundance, biomass, secondary production, consumption rate, and mean body size of communities, together with potential increases in the elemental imbalance for macronutrients, omnivory, trophic position, and niche width and overlap among aquatic consumers along the surface–subterranean continuum. The bottom–up effects induce changes in the topology of stream food webs, which become shorter, with lower trophic diversity at the base of the network, but increased connectance along this environmental gradient.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
151
References
0
Citations
NaN
KQI