language-icon Old Web
English
Sign In

Detritus

In biology, detritus (/dɪˈtraɪtəs/) is dead particulate organic material (as opposed to dissolved organic material). It typically includes the bodies or fragments of dead organisms as well as fecal material. Detritus is typically colonized by communities of microorganisms which act to decompose (or remineralize) the material. In terrestrial ecosystems, it is encountered as leaf litter and other organic matter intermixed with soil, which is denominated 'soil organic matter'. Detritus of aquatic ecosystems is organic material suspended in water and piling up on seabed floors, which is referred to as marine snow. In biology, detritus (/dɪˈtraɪtəs/) is dead particulate organic material (as opposed to dissolved organic material). It typically includes the bodies or fragments of dead organisms as well as fecal material. Detritus is typically colonized by communities of microorganisms which act to decompose (or remineralize) the material. In terrestrial ecosystems, it is encountered as leaf litter and other organic matter intermixed with soil, which is denominated 'soil organic matter'. Detritus of aquatic ecosystems is organic material suspended in water and piling up on seabed floors, which is referred to as marine snow. Dead plants or animals, material derived from animal tissues (such as skin cast off during moulting etc) gradually lose their form, due to both physical processes and the action of decomposers, including grazers, bacteria and fungi. Decomposition, the process through which organic matter is decomposed, takes place in many stages. Materials like proteins, lipids and sugars with low molecular weight are rapidly consumed and absorbed by microorganisms and organisms that feed on dead matter. Other compounds, such as complex carbohydrates are broken down more slowly. The various microorganisms involved in the decomposition break down the organic materials in order to gain the resources they require for their own survival and proliferation. Accordingly, at the same time that the materials of plants and animals are being broken d(biomass) making up the bodies of the microorganisms are built up by a process of assimilation. When microorganisms die, fine organic particles are produced, and if these are eaten by small animals which feed on microorganisms, they will collect inside the intestine, and change shape into large pellets of dung. As a result of this process, most of the materials from dead organisms disappears from view and is not obviously present in any recognisable form, but is in fact present in the form of a combination of fine organic particles and the organisms using them as nutrients. This combination is detritus. In ecosystems on land, detritus is deposited on the surface of the ground, taking forms such as the humic soil beneath a layer of fallen leaves. In aquatic ecosystems, most detritus is suspended in water, and gradually settles. In particular, many different types of material are collected together by currents, and much material settles in slowly flowing areas. Much detritus is used as a source of nutrition for animals. In particular, many bottom feeding animals (benthos) living in mud flats feed in this way. In particular, since excreta are materials which other animals do not need, whatever energy value they might have, they are often unbalanced as a source of nutrients, and are not suitable as a source of nutrition on their own. However, there are many microorganisms which multiply in natural environments. These microorganisms do not simply absorb nutrients from these particles, but also shape their own bodies so that they can take the resources they lack from the area around them, and this allows them to make use of excreta as a source of nutrients. In practical terms, the most important constituents of detritus are complex carbohydrates, which are persistent (difficult to break down), and the microorganisms which multiply using these absorb carbon from the detritus, and materials such as nitrogen and phosphorus from the water in their environment to synthesise the components of their own cells. A characteristic type of food chain called the detritus cycle takes place involving detritus feeders (detritivores), detritus and the microorganisms that multiply on it. For example, mud flats are inhabited by many univalves which are detritus feeders. When these detritus feeders take in detritus with microorganisms multiplying on it, they mainly break down and absorb the microorganisms, which are rich in proteins, and excrete the detritus, which is mostly complex carbohydrates, having hardly broken it down at all. At first this dung is a poor source of nutrition, and so univalves pay no attention to it, but after several days, microorganisms begin to multiply on it again, its nutritional balance improves, and so they eat it again. Through this process of eating the detritus many times over and harvesting the microorganisms from it, the detritus thins out, becomes fractured and becomes easier for the microorganisms to use, and so the complex carbohydrates are also steadily broken down and disappear over time. What is left behind by the detritivores is then further broken down and recycled by decomposers, such as bacteria and fungi. This detritus cycle plays a large part in the so-called purification process, whereby organic materials carried in by rivers is broken down and disappears, and an extremely important part in the breeding and growth of marine resources. In ecosystems on land, far more essential material is broken down as dead material passing through the detritus chain than is broken down by being eaten by animals in a living state. In both land and aquatic ecosystems, the role played by detritus is too large to ignore. In contrast to land ecosystems, dead materials and excreta in aquatic ecosystems are typically transported by water flow; finer particles tend to be transported farther or suspended longer. In freshwater bodies organic material from plants can form a silt known as mulm or humus on the bottom. This material, some called undissolved organic carbon breaks down into dissolved organic carbon and can bond to heavy metal ions via chelation. It can also break down into colored dissolved organic matter such as tannin, a specific form of tannic acid. In saltwater bodies, organic material breaks down and forms a marine snow that slowly settles down to the ocean bottom. Detritus occurs in a variety of terrestrial habitats including forest, chaparral and grassland. In forests the detritus is typically dominated by leaf, twig, and bacteria litter as measured by biomass dominance. This plant litter provides important cover for seedling protection as well as cover for a variety of arthropods, reptiles and amphibians. Some insect larvae feed on the detritus. Fungi and bacteria continue the decomposition process after grazers have consumed larger elements of the organic materials, and animal trampling has assisted in mechanically breaking down organic matter. At the later stages of decomposition, mesophilic micro-organisms decompose residual detritus, generating heat from exothermic processes; such heat generation is associated with the well known phenomenon of the elevated temperature of composting.

[ "Sediment", "Ecology", "Paleontology", "Phytotelma", "Leptophlebia", "Salarias patzneri", "Tallaperla", "Optioservus" ]
Parent Topic
Child Topic
    No Parent Topic