Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse
2018
This paper reports the ultrafast imaging on the formation of periodic surface ripples induced by a single 800 nm, 50 fs laser pulse. The evolution process is observed on a Si surface with a prefabricated nanogroove. The ripples emerge very quickly, only 3 ps after the laser pulse with a fluence of 0.18 J/cm2 irradiating on the surface, and last for several hundreds of picoseconds. The ultrafast dynamics of laser-matter interaction, such as free carrier excitation, carrier and lattice heating, surface plasmon polariton (SPP) excitation, etc, are studied theoretically. The theoretical and experimental results support that the periodic ripples are caused by the periodic energy deposition due to SPP excitation. The emerge time could identify the surface melting causing the formation of periodic ripples, and exclude the other thermal effects, for example, hydrodynamics.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
13
Citations
NaN
KQI