Surface Plasmon-Photon Coupling in Lanthanide-Doped Nanoparticles.

2021 
Lanthanide-doped nanoparticles have great potential for energy conversion applications, as their optical properties can be precisely controlled by varying the doping composition, concentration, and surface structures, as well as through plasmonic coupling. In this Perspective we highlight recent advances in upconversion emission modulation enabled by coupling upconversion nanoparticles with well-defined plasmonic nanostructures. We emphasize fundamental understanding of luminescence enhancement, monochromatic emission amplification, lifetime tuning, and polarization control at nanoscale. The interplay between localized surface plasmons and absorbed photons at the plasmonic metal-lanthanide interface substantially enriches the interpretation of plasmon-coupled nonlinear photophysical processes. These studies will enable novel functional nanomaterials or nanostructures to be designed for a multitude of technological applications, including biomedicine, lasing, optogenetics, super-resolution imaging, photovoltaics, and photocatalysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    152
    References
    13
    Citations
    NaN
    KQI
    []