Control of mammalian brain aging by the unfolded protein response (UPR)

2020 
Aging is the major risk factor for the development of dementia and neurodegenerative disorders, and the aging brain manifests severe deficits in buffering capacity by the proteostasis network. Accordingly, we investigated the significance of the unfolded protein response (UPR), a major signaling pathway that copes with endoplasmic reticulum (ER) stress, to normal mammalian brain aging. Genetic disruption of ER stress sensor IRE1α accelerated cognitive and motor dysfunction during aging. Exogenous bolstering of the UPR by overexpressing an active form of the transcription factor XBP1 restored synaptic and cognitive function in addition to reducing cell senescence. Remarkably, proteomic profiling of hippocampal tissue indicated that XBP1s expression corrected age-related alterations in synaptic function. Collectively, our data demonstrate that strategies to manipulate the UPR sustain healthy brain aging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    8
    Citations
    NaN
    KQI
    []