Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing

2015 
Aluminum is an abundant and high-quality material for plasmonics with potential for large-area, low-cost photonic technologies. Here we examine aluminum nanoclusters with plasmonic Fano resonances that can be tuned from the near-UV into the visible region of the spectrum. These nanoclusters can be designed with specific chromaticities in the blue-green region of the spectrum and exhibit a remarkable spectral sensitivity to changes in the local dielectric environment. We show that such structures can be used quite generally for colorimetric localized surface plasmon resonance (LSPR) sensing, where the presence of analytes is detected by directly observable color changes rather than through photodetectors and spectral analyzers. To quantify our results and provide a metric for optimization of such structures for colorimetric LSPR sensing, we introduce a figure of merit based on the color perception ability of the human eye.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    173
    Citations
    NaN
    KQI
    []