Solvent effects on the excited state properties of 2-aminopurine—a theoretical study by the ONIOM and Supramolecular method

2004 
Abstract In this paper, the micro-solvated effects on the lowest-energy vertical transition state and adiabatic excited states of 2-aminopurine (2Ap) were studied by Supramolecular method (B3LYP/6-31++G(d)) and ONIOM (B3LYP/6-31++G(d):PM3) method. The results are as follows: (1) In 2Ap molecule surrounded by six water molecules the pyramidalization of amino group in 2Ap almost disappears, and the hex-atomic ring is obviously buckled. The adiabatic lowest-energy valence excitation of gaseous 2Ap also causes the disappearance of amino pyramidalization. (2) The energy for lowest-energy singlet π→π ∗ vertical transition in water is predicted as 3.99 and 4.29 eV by Supramolecular and ONIOM method, respectively. Both values are in good agreement with the reported experimental result, 4.11 eV. The energy for the second lowest-energy n →π ∗ transition, 4.72 eV, by the Supramolecular method is obviously deviated from the reported experimental value 4.46 eV. The corresponding value given by the two-layer ONIOM method, 4.43 eV, is in good agreement with the experimental value. (3) The optimized energy of the fluorescent emission state (S 1 state) are 3.61 and 3.87 eV by Supramolecular and ONIOM methods, respectively. The calculated oscillator strengths, in both gas and water clusters, were compared with reported experimental and theoretical results. These results indicated that both Supramolecular and ONIOM methods, combined with TD DFT B3LYP/6311++G(d), can provide good results of calculating excited state and spectra properties of 2Ap in condensed phase. This fact encouraged us to extend our study to 2Ap-T base pair and its solvated model so as to obtain the spectra properties of 2Ap in real DNA environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    11
    Citations
    NaN
    KQI
    []