Structural and electrical characterization of epitaxial Ge thin films on Si(001) formed by sputtering
2017
We structurally and electrically characterize sub-10-nm-thick heteroepitaxial Ge films on Si(001), formed by heated sputtering and subsequent rapid thermal annealing (RTA). After RTA treatment at 720 °C, we find the heteroepitaxial Ge films to have smooth surfaces with a roughness root mean square value of 0.54 nm. Raman measurement reveals that the 720 °C RTA improves the crystallinity of Ge films while maintaining abrupt Ge/Si interfaces. Cross-sectional transmission electron microscopy confirms that the 720 °C RTA step effectively reduces stacking faults and dislocations in the Ge films. The Richardson plot of the TaN/Ge/n-Si diode indicates a Schottky barrier height (SBH) of 0.33 V, which is close to the height of 0.37 V measured from the capacitance–voltage measurement. These values are reasonable compared with the reported SBH of the TaN/bulk Ge Schottky barrier diode, indicating that the method involving heated sputtering and subsequent RTA provides adequate thin Ge films for Ge/Si heterostructures.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI