Fatty acid-binding protein 1 increases steer fat deposition by facilitating the synthesis and secretion of triacylglycerol in liver

2019 
Castration is an important means of improving the beef quality via increasing fat deposition. However, little is known about the molecular mechanism underlying the fat deposition after castration. Here, the intramuscular fat (IMF) content of the steer group was shown to be much higher than the bull group. To understand transcriptional changes in the genes involved in fat deposition following castration, differential expression patterns of mRNAs in liver tissue were investigated in steers and bulls using RNA sequencing. In total, we obtained 58,282,367–54,918,002 uniquely mapped reads, which covered 90.13% of the currently annotated transcripts; 5,864 novel transcripts and optimized 9,088 known genes were determined. These results indicated that castration could change the expression patterns of mRNAs in liver tissue, and 282 differentially expressed genes (DEGs) were detected between steers and bulls. KEGG pathway analysis showed that the DEGs were mostly enriched in PPAR signaling pathway, steroid biosynthesis, steroid hormone biosynthesis, and biosynthesis of fatty acids. Furthermore, eight DEGs were corroborated via quantitative real-time PCR and we found that FABP1 gene knockdown in bovine hepatocytes prominently reduced intracellular triacylglycerol (TAG) synthesis and very low density lipoprotein (VLDL) secretion in culture medium. In summary, these results indicate that FABP1 may promote fat deposition by promoting the production and secretion of TAG and VLDL in steer liver.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    7
    Citations
    NaN
    KQI
    []